Validation of nonlinear inverse algorithms with Markov chain Monte Carlo method
نویسندگان
چکیده
منابع مشابه
On nonlinear Markov chain Monte Carlo
CHRISTOPHE ANDRIEU1, AJAY JASRA2, ARNAUD DOUCET3 and PIERRE DEL MORAL4 1Department of Mathematics, University of Bristol, Bristol BS8 1TW, UK. E-mail: [email protected] 2Department of Mathematics, Imperial College London, London, SW7 2AZ, UK. E-mail: [email protected] 3Department of Statistics, University of British Columbia, Vancouver, V6T 1Z2, Canada. E-mail: [email protected] 4Centre INRI...
متن کاملOn Adaptive Markov Chain Monte Carlo Algorithms
Abstract We look at adaptive MCMC algorithms that generate stochastic processes based on sequences of transition kernels, where each transition kernel is allowed to depend on the past of the process. We show under certain conditions that the generated stochastic process is ergodic, with appropriate stationary distribution. We then consider the Random Walk Metropolis (RWM) algorithm with normal ...
متن کاملSpeeeding Up Markov Chain Monte Carlo Algorithms
We prove an upper bound on the convergence rate of Markov Chain Monte Carlo (MCMC) algorithms for the important special case when the state space can be aggregated into a smaller space, such that the aggregated chain approximately preserves the Markov property.
متن کاملMarkov Chain Monte Carlo
Markov chain Monte Carlo is an umbrella term for algorithms that use Markov chains to sample from a given probability distribution. This paper is a brief examination of Markov chain Monte Carlo and its usage. We begin by discussing Markov chains and the ergodicity, convergence, and reversibility thereof before proceeding to a short overview of Markov chain Monte Carlo and the use of mixing time...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geophysical Research
سال: 2004
ISSN: 0148-0227
DOI: 10.1029/2004jd004927